### Arup Pedestrian Impactor Models

Pedestrian safety is one of the most rapidly evolving parts of automotive legislation and engineers need the right pedestrian simulation tools for the job.



## Upper Legform European Legforms

Used for pedestrian impact load cases to predict the potential risk of pelvis upper leg injuries.

- Model has been calibrated against the WG 17 dynamic certification test.
- Used in regulations:
  - Euro NCAP (2020 & 2023)
  - GTR No. 9 and ECE R127
- Oasys LS-DYNA Environment provides a comprehensive solution to upper legform impactor analysis setup and post-processing.





# Upper Legform European Legforms

This impactor is used in the EU pedestrian safety regulation (EC) 631/2009 (22nd July 2009) and by Euro NCAP in their Pedestrian Testing Protocol.

- The impactor is rigid and is covered on the impact side by Confor foam and a neopren layer.
- Two load cell transducers measure the individual forces applied at either end of the upper legform impactor front member.
- Three cross section moment outputs are used to measure the bending moments of the front member.

#### **Validation**

This legform model has been calibrated using the standard pendulum calibration test detailed in Regulation (EC) 631/2009.

The target speed and mass of the supplied upper legform model is set up in accordance to the Euro NCAP regulation (ref. "Euro-NCAP Pedestrian Testing Protocol v8.4". November 2017).

Validation work has been carried out in both SMP and MPP versions of LS-DYNA R9.2, R7.12 and R11.2.2 to ensure the performance and accuracy.

### **Specifications**

| LS-DYNA<br>Release<br>Version | Total Number<br>of Elements | Mass  | Regulation Test       | Regulation<br>Speed |
|-------------------------------|-----------------------------|-------|-----------------------|---------------------|
| LS-DYNA<br>R9.3.1<br>MPP/SP   | 62447                       | 9.5kg | Euro NCAP &<br>J-NCAP | 11.1 m/s            |



