

Customer Talk: Numerical Noise in LS-DYNA

Richard Young

MDO Lead Engineer

01 Contents

- Introduction
- Decomposition Noise
- Natural Noise
- Conclusion

02 Previous Studies - Runtime Focus

03 History - Consistency Flag and Deck Shuffle

Running same model on the same computer multiple times produced different results each time.

LS-DYNA developers add consistency flag to control order of calculation at a small runtime cost.

Changing the order of referenced includes changed the order of operation during the solution.

Current LS-DYNA sorts the model during initialisation for consistency.

Run	Dash Int (mm)	TDD (mm)	Max Pulse (g)	VPI (g)
Nominal	143.8	616.5	41.4	70.1
Maximum	143.8	619.7	49.8	71.2
Minimum	132.0	607.8	39.6	69.4
Average	137.0	615.6	43.3	70.1
St Dev	2.8	2.7	2.2	0.4
RANGE	11.8	11.9	10.2	1.8

CUSTOMER LOVE UNITY INTEGRITY GROWTH IMPACT

04 Decomposition – Number of CPUs

Run	Dash Int (mm)	TDD (mm)	Max Pulse (g)	VPI (g)	Runtime (s)	CPU Hours
8 CPU	139.6	615.4	41.6	69.9	134665	299.3
16 CPU	137.6	613.4	40.5	70.5	78140	347.3
32 CPU	138.8	615.1	43.3	70.2	45271	402.4
64 CPU	141.1	617.3	43.1	70.0	29425	523.1
96 CPU	143.8	616.5	41.4	70.1	23631	630.2
128 CPU	140.7	614.5	47.2	70.3	20202	718.3
RANGE	6.2	3.9	6.7	0.4		

Variability in results with no physical change

CUSTOMER LOVE UNITY INTEGRITY GROWTH IMPACT

04 Decomposition – Number of CPUs

05 Element Distribution Uniformity Change Kit

element
Distribution
Uniformity
Change
Kit

Length – 80mm Mass – 60g Elements – 2000

Moving duck perpendicular to cut planes affects position of cut planes.

05 Element Distribution Uniformity Change Kit

Variability in results with no physical change

06 Decomposition Differential - Reference

06 Decomposition Differential - Duck Translations

06 Decomposition Differential – Secondary AC Removal

CUSTOMER LOVE UNITY INTEGRITY GROWTH IMPACT

06 Decomposition Differential - Bumper Development

06 Decomposition Differential - Tailgate Removal

Mesh density and features change how waves propagate, reflect, refract and interact.

JLR

08 The Quiescent Model

D3PLOT: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q

D3PLOT: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q

Magnification: 100.00 x

Magnification: 1.001 x 0.005000

0.005000

08 The Quiescent Model

D3PLOT: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q

Magnification: 100.00 x

0.005000

08 The Quiescent Model

09 Single Change Effect - Additional NRB

M1/M2/M3/M4/M5/M6/M7/M8: Magnification: 100.00 x

0.025999

10 Mode Influence From Vibrations

11 Noise Accumulation

D3PLOT: M1: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q M2: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q M3: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q M4: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q M5: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q M6: I663_20my_110_upv3_p6h_mhev_twin_lhd_fixed_fl13_n400q

Moving barrier away from vehicle to allow different vibration mode at first contact.

.000000000

11 Noise Accumulation

11 Noise Accumulation

12 Conclusions and Open Questions

- The change in results from running on a different number of CPUs is a well-known phenomenon. Changing local element density by adding, removing or exchanging a component invokes the same noise potential as changing the number of CPUs.
- Modelling dynamic features invoke vibrations which reduces clarity in what the initial condition is. Much like a NVH model, changing components, stiffnesses and masses changes further perturbates the initial condition.
- If an output is shown to be sensitive to noise, differential A-B comparison of two runs may require a statistical approach as one deliberate change is causing other uncontrolled changes and neither run may represent an average condition.
- If initial condition vibrations and procedural perturbations generate output noise, what is the cause?
 - The LS-DYNA solver?
 - The modelling practice used to represent the physical design?
 - An inherent property of the physical design itself?

13 Note

The model in this presentation and the results generated are to demonstrate variance only and is not an indicator of real performance. The model is not set to a true mass or velocity used in any internal, consumer or regulatory standards.