

T/HIS 22.0 – Contents

- <u>Complete Ansys LS-DYNA Support</u>
 - <u>Support for *AIRBAG_CPG</u>
 - DEMRCF
 - ICVOUT
- Efficient End-to-End Workflows
 - <u>Virtual Testing</u>
 - <u>C-NCAP Management Regulation</u>
 - Working with Test Data
 - <u>Automotive Assessments Improvements</u>
 - <u>SimVT Graph Options</u>
 - <u>VTC Quality Criteria Workflows</u>
 - <u>VTC Videos File Size</u>
 - Pulse Index
 - <u>Curve to ISO-MME</u>
- Human-Safe Design
 - <u>Automotive Protocols</u>
 - <u>New Automotive Operations</u>

- Occupant Load Criterion (OLC)
- <u>Tibia Index (TI)</u>
- DAMAGE (DMG)
- Speed and Performance
 - Datums
 - Write ISO-MME Files
 - Email Minidump Files
 - Initial Window Placement
- Flexible Automation and Integration
 - JavaScript API
- Other Developments and Preferences
 - <u>Units</u>
 - New Preferences
- Contact Information

те Weeke так разли нару Нару Нару Нару (100 <u>разна) (2001 (201 100)</u> 2000 (201 100) ната акадитара Нару (100 (201 100) (201 100) (201 100) (201 100) на и и и и и и и и и и стак в скороне. 1. Max St0100877 ; 1.282846400 Min St0565151 : 1.8734666, 10

Complete Ansys LS-DYNA

and the state of t

(Nax all of

Airbags

Support for *AIRBAG_CPG

A New Airbag Gas Solver

Support for Continuum-based Particle Gas (CPG)

- CPG is a new continuum-based particle approach for airbag simulations, available from Ansys LS-DYNA 2025R1 (R16).
- As a fully functional fluid solver, CPG is more effective at simulating gas flow than the corpuscular particle method (CPM), and more capable at internal fluid-structure interaction than ALE.
- Key features:

Uasvs 🧩 LS-DYNA Environment

- Compressible Navier-Stokes solver coupled with an ideal gas equation of state.
- Meshless by design, based on a generalized finite-difference scheme.
- Particle cloud fills airbag volume, gas passes from particle to particle (Eulerian approach).
- Particles added or removed only when necessary.
- Excellent accuracy, robustness & scalability to hundreds of cores.
- Designed for airbag simulation, validated by airbag CAE engineers:
 - Simple *AIRBAG_CPG keyword format that copies other *AIRBAG_ types. Same input data for inflators, fabric, etc.
 - First release supports internal structures, simple venting, fabric porosity, multiple gases/orifices/inflators, moving environment, local particle refinement, and more.
 - Inviscid with free-slip boundary by default, although viscosity and wall friction available.
- CPG is destined to take airbag simulation to the next level required for virtual testing, however accurate input data and well folded models are also vital to achieve useful results.

Support for CPG Results in T/HIS

We work closely with Ansys to ensure that the Oasys LS-DYNA Environment is the leading choice for CPG workflows

• T/HIS 22.0 supports all R16 CPG data in the binout file:

Oasys 🔅 LS-DYNA Environment

DEMRCF

DEMRCF

- A new ASCII output file *demrcf* has been introduced. This output reports the non-tied coupling between discrete element spheres (DES) and surfaces that are part of either shell parts or solid parts.
- The demrcf output file allows the plotting of contact forces, moments, and the corresponding mass from the contact surface to the DES element, provided this data is available.
- To output relevant data:
 - Define the necessary contacts using the *DEFINE_DE_TO_SURFACE_COUPLING keyword in PRIMER.
 - The output frequency of the coupling forces within the DEM interface force file is controlled by the *DATABASE_BINARY_DEMFOR keyword.
 - To record this information in the *demrcf* output file, enable the RCFORC field within the DATABASE → (ASCII)_OPTION menu.

l	<< Undock		Read	Data		? >	
	LS-DYNA G		ips	Key	word	T/HIS Curve	
	Bulk Data	Keybo	oard	C	sv	Screen	
	ISO	LS-Pre	Post	DIAdem		NASTRAN	
	CURVOUT	Equa	ion HDF				
	Global 🔻	Part	t V	Part G	Group 🔻	Node 🔻	
	Solid V	Bear	m 🔻	Shell V		Thick Shell V	
	Stonewall V	Sprin	ig 🔻	Airt	ag 🔻	Contact V	
	Geo Contact	Seatb	elt 🔻	Retr	actor	Slipring	
	Reaction V	Join	t 🔻	X Section V SPC V		Subsystem V	
	Rigid Body 🔻	Spotw	eld 🔻			Boundary V	
	FSI	SPH	•	Tra	cer 🔻	Pulley V	
	ICFD	CESE		EM		PBLAST V	
	Pres Tube 🔻	Beari	ng 🔻	CURVOUT .		DEMRCF V	
			Read Models				
	Select Mode	ls	New	Model	eread Model		
	Output cu	rve: %	(highe	st+1)			
	Key	in :				Apply	
1	FX - X force				— в	intities 巜	
Ì	FY - Y force				Sort	v Model ▼	
FZ - Z force FM - Force Mag MX - X moment					A11	None	
						None	
					Sele	ct DEMRCF(s)	
MY - Y moment				M1:Der		nrcf 1	
ĺ	MZ - Z mome			M1:De	mrcf 2		
MM - Moment Mag							
ţ							

ICVOUT

ICVOUT

- A new ASCII output file *icvout* (incompressible control volume) is now supported by T/HIS. The icvout output file allows the plotting of pressure, volume, flow rate and area of control volumes, provided the data is available.
- BINOUT file containing icvout data can now be read into T/HIS and plotted for its components.
- Volume and Pressure are output as ICV (Incompressible Control Volume) components of the control volumes.
- Flow rate and Area are output as ICVI (Incompressible Control Volume Interaction) components of the control volumes.
- To output relevant data:

Uasvs 🔅 LS-DYNA Environment

- Define the control volumes using *DEFINE_CONTROL_VOLUME in PRIMER, that output the pressure and volume components.
- The flow area between the interacting control volumes is defined using *DEFINE_CONTROL_VOLUME_FLOW_AREA.
- The interaction between the interacting control volumes is defined using *DEFINE_CONTROL_VOLUME_INTERACTION.

<< Indock	Read	Data	?)
LS-DYNA	Groups	Keyword	T/HIS Curve
Bulk Data	Kevboard	CSV	Screen
ISO	LS-PrePost	DIAdem	NASTRAN
CURVOUT	Equation	HDF	
Global 🔻	Part v	Part Group	Node 🔻
Solid V	Beam v	Shell	Thick Shell
Stonewall <	Spring V	Airbag	Contact •
Geo Contact	Seatbelt V	Retractor	Slipring
Reaction •	Joint ▼	X Section	Subsystem •
Rigid Body •	Spotweld •	SPC	Boundary •
FSI	SPH 🔻	Tracer	Pulley 🔻
ICFD	CESE	EM	PBLAST V
Pres Tube V	Bearing v	CURVOUT	DEMRCF •
	Read M	Models	
Select Mode	ls New I	Model F	eread Model
Output cu	urve [.] % (highes	st+1)	
Kov	in ·		Apply
Neda Data	····	_	Арріу
Node Data			
Thermal Data			
Drag Data			
		_	

Fa Weeder Inde Linders in der Linder im Fallen in der Linder in der Linder im Fallen im Fa Fallen im Fal

Maxalo

0.500 0.000 0.700 0.800

Max S10103877 : 1.262904E+00, Min S10595151 : 1.823150E-12

Efficient End-to-End Workflows

Virtual Testing

- <u>C-NCAP Management Regulation</u>
- Working with Test Data
- <u>Automotive Assessments Improvements</u>
- <u>SimVT Graph Options</u>
- <u>VTC Quality Criteria Workflows</u>
- VTC Videos File Size

C-NCAP Management Regulation

C-NCAP Management Regulation (2024 Edition)

Since Oasys 21.1, there has been support for the various requirements of the C-NCAP Far Side Occupant Protection Protocol, including:

- For each of the eight Working Conditions:
 - Occupant injury assessment
 - ISO Correlation Fitting indices
 - Correction Factor A
- Dual-Occupant Penalty calculation
- ISO correlation fitting indices for the Virtual Assessment Certificate (prerequisite for the symmetry of far side occupant protection airbags)
- Overall score calculation

Oasvs 🔅 LS-DYNA Environment

Read the documentation to learn more

C-NCAP VTC Quality Criteria

- The C-NCAP VTC Quality Criteria Workflow tool follows the same principals as the Euro NCAP version but assesses the quality criteria specified in section H.1.1(f) of the C-NCAP Far Side Simulation & Assessment Protocol.
- The tool can be automated using the REPORTER template provided.

Oasys 🔅 LS-DYNA Environment

C-NCAP VTC Videos

 The C-NCAP VTC Videos Workflow tool follows the same principles as the Euro NCAP version but helps you calculate the views and export the videos specified in section H.2.8 of the C-NCAP Far Side Occupant Protection Protocol (2024 Edition).

 Use the standard Workflow method in
 PRIMER and D3PLOT or the whole process can be automated using the
 REPORTER template provided.

Oasys 🔅 LS-DYNA Environment

Chinese Language Reports

Oasys 🔅 LS-DYNA Environment

 You now have access to all the C-NCAP REPORTER templates in both English and Chinese, for ease of communication with your teams, partners, suppliers, and C-NCAP.

• 所有 C-NCAP REPORTER 模板都同时提供英 文和中文版供您使用, 方便您与团队、合作伙 伴、供应商, 和 C-NCAP 沟通。

Chinese Language Reports

 Example reports generated by C-NCAP REPORTER templates, in English (left) and Chinese (right):

中文版报告模板

• 下方展示了由 C-NCAP REPORTER 模板自动 生成的英文版(左侧)和中文版(右侧)报告 示例。

Working with Test Data

Improved unit handling and configuration for imported data

- Previously, imported ISO-MME data was assumed to be in SI units. This assumption was not always valid and data with non-standard units (e.g. accelerations in 'g' or rotations in 'degrees') needed to be manually scaled.
- Additionally, the vehicle drive side was inferred from the position code of the first occupant channel, which was assumed to be the driver.
- Now, when importing ISO-MME channel data, T/HIS attempts to automatically determine the units from the unit header in each channel file and the drive side from the "Driver position object 1" header in the MME file. However, it is not always possible to correctly infer this information.
- The new Import Configuration window (and Import Config. file) gives you the option to correct any issues with the channel units, polarity, scale and naming before importing ISO-MME or CSV data.

#DRIVE_SIDE #PROTOCOL	LHD				C	onfigure impo	ort				
#UNITS		•	-			Import Configuration			3		
TIME	ms	Import	Apply	Configuration file:	: Load Save	Channel	New Name	Y Scale	Unit Type		
FORCE	g kN	Config		-		11HEAD0000WSDCX0	<optional></optional>	1	LENGTH		
ENGTH	mm	Conng.	Protocol	: None			contional>	1			
IOMENT	kN*m	File	Drive side	: LHD		▼ IIHEAD0000w3DCT0	 optional> 	1	LENGTH		
DTATIONAL_VELOCITY	deg/s	1 110	Lipite	TIME		11HEAD0000WSDCZ0	<optional></optional>	1	LENGTH	•	
ELUCITY	10/5		Onits	. IIME	5	11HEAD0000WSAVX0	<optional></optional>	1	ROTATIONAL_VELOCITY		
CHANNEL_DATA				ACCELERATION	g	11HEAD0000WSAVY0	<optional></optional>	1	ROTATIONAL VELOCITY	v	
hannel	New Name	Y Scale Unit Type		FORCE	kN	11HEAD0000WSAVZ0	<optional></optional>	1		T	
HEAD0000WSDCX0	<optional></optional>	1 LENGTH		LENGTH	mm		<ontional></ontional>	1			
HEAD0000WSDCZ0	<optional></optional>	1 LENGTH		MOMENT	kN*m	TINEAD0000W3ACX0	 optional> 	1	ACCELERATION	-	
HEAD0000WSAVX0	<optional></optional>	1 ROTATIONAL_VELOCITY			de a la	11HEAD0000WSACY0	<optional></optional>	1	ACCELERATION	•	
1HEAD0000WSAVY0	<optional></optional>	1 ROTATIONAL_VELOCITY		ROTATIONAL_VELOCITY	deg/s	11HEAD0000WSACZ0	<optional></optional>	1	ACCELERATION	•	
1HEAD0000WSAVZ0	<optional></optional>	1 ROTATIONAL_VELOCITY		VELOCITY	ft/s	11HEAD0000WSVEX0	<optional></optional>	1	VELOCITY	v	
	soptionate	TAGGELLIAMON				11HEAD0000WSVEY0	<optional></optional>	1	VELOCITY	•	
						11HEAD0000WSVEZ0	<optional></optional>	1	VELOCITY	•	
Import ISO	-MME/CS	V				11NECKUP00WSF0X0	<optional></optional>	1	FORCE	•	
						11NECKUP00WSF0Y0	<optional></optional>	1	FORCE	v	
moort ISO MME or CSV data in					11NECKUP00WSF0Z0	<optional></optional>	1	FORCE	•		
iipoit is						11NECKUP00WSM0X0	<optional></optional>	1	MOMENT	•	
utomotiv	/e Ass	essments				11NECKUP00WSM0Y0	<optional></optional>	1	MOMENT	•	Dete lass of
and Sim\/T					11NECKUP00WSM0Z0	<optional></optional>	1	MOMENT	•	Data Import	
	1					11NECKL000WSF0X0	<optional></optional>	1	FORCE	•	
						11NECKL000WSE0Y0	<ontional></ontional>	1	FORCE	.	

Time of first sample

To accommodate the pre-crash (settling) phase in a simulation, a new "Time of first sample" input has been added to the Automotive Assessments workflow set-up in PRIMER.

Automotive Assessments and SimVT

- In accordance with ISO-MME convention a <u>negative</u> time value is used to shift the start time of the output curves when post-processing using the Automotive Assessments or SimVT workflows in T/HIS.
- For example, if your analysis begins with 200 milliseconds of set-up (e.g. seat squash etc.) before the crash test load case commences then you would enter -0.2 in the "Time of first sample" input to shift the curves so that the crash test will effectively start at t=0.
- Any data before t=0 is automatically discarded.

LSDYNA to ISO-MME

- The "Time of first sample" value is also used by the LS-DYNA to ISO-MME workflow.
- If it is defined, then the "Time of first sample" header value will automatically be set in the channel files.
- Note that in this instance the samples which are shifted to time < 0 will not be discarded as this only happens when the ISO-MME data is processed.

Test object number	:1
Name of the channel	:Accel x - Node 10001 : (HEAD0000WSAC) (Reg 0.100E-03)
Laboratory channel code	:NOVALUE
Customer channel code	:NOVALUE
Channel code	:11HEAD0000WSACX0
Unit	:m/(s*s)
Reference system	:NOVALUE
Pre-filter type	:NOVALUE
Cut off frequency	:NOVALUE
Channel amplitude class	:NOVALUE
Sampling interval	:0.0001
Bit resolution	: NOVALUE
Time of first sample	:-0.02
Number of samples	: 2000
0	
-2.86178e-08	
-5.19904e-09	

Automotive Assessments Improvements

Automotive Assessments Improvements

 Entity IDs that are defined but don't have corresponding *DATABASE_HISTORY_XXXX keyword defined are now shown with a latent cyan-coloured textbox background:

A window is now mapped when such entity IDs are selected or typed into the text box, giving you the option to create the corresponding *DATABASE_HISTORY_XXXX keyword for them. It also provides an option to select the include file to which the keyword will be added. Note: you have to save the include and re(run) the analysis to obtain results for the corresponding entity.

-	Create *DATABASE_HISTORY_NODE?	
*DATABASE_HISTO	DRY_NODE not present for 32198. Do you wish to create it?	
Create in Include:	08_FS_AEMDB_75_x-ref_z-ref_50M_Sim_1.key	Dropdown to select the include file
	✓ Update Current Layer Include	If ticked, then the current layer include will
	Title:	be updated to the one selected in the
		dropdown above
	Create Cancel	
		Option to provide optional Title

Automotive Assessments Improvements

- The ISO channel codes have been updated for several channels in the Far Side VTC v1.1 draft protocol. The necessary changes have been incorporated in Automotive Assessments workflows tool, and backward compatibility support has been added for the older ISO codes. The channels whose ISO codes have changed are:
 - LAP Belt (SEBE00**03**B6FO00 to SEBE00**00**B6FO00)
 - Shoulder Belt (SEBE0003B3FO00 to SEBE0000B3FO00)
 - Contact Dummy-Airbag (ARBG0000WSFOX/Y/Z to AIRB0000WSFOX/Y/Z)
 - Thoracic Spine 04 and 12 Displacements (THSP04/120000DCX/Y/Z0 to THSP04/1200WSDCX/Y/Z0).
- The 'Far Side + VTC' and 'Far Side' crash tests have been renamed to 'Far Side Sled' for consistency across the tools. The
 version for the former 'Far Side + VTC' is now 2024, while the version for the former 'Far Side' crash test is 2022. Support for
 backward compatibility has also been added.
- The term Physiology has been renamed to Anthropometry and support for backward compatibility has also been added.
- Users can now select multiple contacts for contact structures (Contact Dummy Airbag, Contact Dummy Centre Console, Contact Dummy – Seat and Contact Dummy - Seatbelt) via SELECT option.

SimVT Graph Options

SimVT Graph Options – Show Corridors

- A new graph option "Show corridors" has been added to SimVT plotting controls. This determines whether the inner and outer corridors are plotted along with the reference and simulation curves.
- Deselecting show corridors can help reduce clutter on the graphs.

Corridors turned on

Corridors turned off

VTC Quality Criteria Workflows

Quality Criteria – Euro NCAP Frontal

 The Euro NCAP VTC Quality Criteria Workflows tool and associated REPORTER Template are now capable of assessing the Euro NCAP Virtual Frontal Simulation & Assessment Protocol (draft) as well as the existing Far Side protocol.

- Euro NCAP VTC Quality Criteria ? -					
Test Type	Frontal (Draft)				
Model Unit System	U2 (mm, t, s) ▼				
Display Time Unit	Seconds [s]				
Display Energy Unit	Millijoules [mJ] ▼				
Display Displacement Unit	Millimetres [mm]				
Display Mass Unit	Kilograms [kg]				
Dummy Parts	1030 PARTs selected				
Head History Node (Global)	01HEAD0000T3ACX				
H-point History Node	01PELV0000T3ACZ				
B-pillar History Node	45011535				
Seat Parts	109 PARTs selected				
Save To File	Save To Model				

Quality Criteria – Euro NCAP HBM

 The Euro NCAP HBM Quality Criteria Workflows tool and associated REPORTER Template allow you to perform the quality checks outlined in Section 7.1 of the Euro NCAP VTC HBM Frontal Protocol (draft) relating to energy, added mass and displacements.

VTC Videos File Size

VTC Videos Settings Improvements

- The displayed End time is now determined by model simulation end time rounded down to three decimal places rather than model simulation end time minus 1 interval step (which had caused issues with video capture previously).
- For the Euro NCAP version, the Video Quality slider has been replaced with a target file size option to allow users to satisfy the 1-10 MB video requirement.

Pulse Index

Pulse Index (PI)

- The Pulse Index Workflow allows you to estimate the acceleration that would be experienced by a vehicle occupant in a crash test scenario.
- Pulse Index has been updated following user feedback. The occupant mass input has been removed with stiffness now being taken per unit mass. Based on the stiffness input, the time period of the system is now displayed to serve as a sense check. The acceleration curve filter can now be chosen from three options: C60, C180, and C600. A differentiated velocity curve can now be used in place of the acceleration curve.

Oasys 🔅 LS-DYNA Environment

Curve to ISO-MME

Oasys 🔅 LS-DYNA Environment

Curve to ISO-MME

 A new Workflows tool "Curve to ISO-MME" allows you to write any curves from your T/HIS session directly to ISO-MME format without the need of a configuration file.

- You can access the tool from either the Tools → Workflows menu or from:
 - 1. Select **Tools** \rightarrow **Write**
 - 2. Select output format as ISO-MME
 - 3. Select Data source Curves
 - 4. Click Next

-	Curve to ISO-MME	? - 🗆 🗙
Curves:	3 curves selected	
Test name:	Far Side Sled	
MME Filename:	FS_Pole_75_x-ref_z-ref_50M_Sim_	
Output directory:	C:\Cases\post_light_52799b\curve_to_isomme_out	
MME Header CSV:	urve_to_isomme\post\t-his\sample_mme_header.c	sv 😑
ISO-MME Format:	1.6 ▼	
Export		

es the mark the Part (and - Dary of * I H H H H H H H H H GT IC & G. 10000 PEN-Max \$10103877 : 1.262904E+00. Min \$10595151 : 1.823150E-12

- Hottes -

- I in gins

d Utilisation Factor (Max all ob

0.300 0.400 0.500 0.000 0.700 0.800

0.900

8.6317

Human-Safe Design

A DESCRIPTION OF THE OWNER

Automotive Protocols

New Protocols and Regulations

 Automotive Assessments and REPORTER now support the following new protocols and regulations:

Regulation	Loadcase
C-NCAP	Far Side Occupant Protection
Global NCAP	MDB, ODB, Side Pole
JNCAP	FFB, MDB, ODB
KNCAP	FFB, MDB, Side Pole
UN ECE	R94, R95, R135, R137

						aluation Result	Total Score
KNCAP Side Pole						Level 5	>= 10.5
	_	_		_		Level 4	>= 9.0 and < 10.5
		Body Regio	on Assessments			Level 3	>= 7.5 and < 9.0
Head	Value	Points	Abdomen	Value	Points	Level 2	>= 6.0 and < 7.5
Direct head contact with pole	NO	4.000	Top Compression [mm]	30.6	4.000		
Peak resultant acceleration [g]	591.5	0.000*	Bottom Compression [mm]	23.2	4.000	Level 1	< 6.0
HIC15	5247.5	0.000*	Incorrect airbag deployment (-1)		0.000		
Incorrect airbag deployment (-1)		0.000	Top Abdomen Viscous criterion [m/s]	0.28	Pass	uation result is the value cor	responding to the occupant score in
Head Score *Capping limit exceeded		0.000*	Bottom Abdomen Viscous criterion [m/s]	0.20	Pass	abové	
Chest	Value	Points	Abdomen viscous criterion		Pass		
Top Compression [mm]	60.4	0.000*	Lowerspine 3ms acceleration criterion [g]	58.03	Pass	Driver	Front Decompos
Middle Compression [mm]	54.9	0.000	Abdomen Score		4.000	Driver	Front Passenger
Bottom Compression [mm]	40.6	1.715					
Incorrect airbag deployment (-1)		0.000	Pelvis	Value	Points	1/5	1/5
Top Chest Viscous criterion [m/s]	1.19	Fail	Pubic Symphysis force [kN]	0.916	4.000	115	1/5
Middle Chest Viscous criterion [m/s]	0.96	Pass	incorrect airoag deployment (-1)		0.000		
Bottom Chest Viscous criterion [m/s]	0.54	Pass	Pelvis Score		4.000		
Chest viscous criterion		Fail	Shoulder	Value	Points		
Shoulder lateral force criterion		Pass	Right Shoulder lateral force [kN]	0.80	Pass		
Chest Score		0.000*	Left Shoulder lateral force [kN]	2.19	Pass		
Case in Internation Chart desire address first success	and a		Shoulder lateral force criterion		Pass		

Upgraded Protocols

• The following protocols have been updated:

Regulation	Loadcase	Update
Euro NCAP	MPDB Occupant Assessment	 2024 (Follows Adult Occupant Protocol v9.3) Includes DAMAGE assessment
IIHS	Front SOB	 2024 (Version VII) New fuel modifier
IIHS	Side MDB	 2024 (Version IV) New fuel modifier and updated head protection rating system

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)
	2018	ODB	•	•			•
	2024	Head Impact					•
	2021	Leg Impact					•
	2022	MPDB Occupant	•	•		•	
	2023	MPDB Compatibility					•
	2024	Side Pole	•	•		•	
C-INCAP		Far Side Pole	•	•		•	
		Far Side Sled	•	•		•	
		VTC Quality Criteria	•	•		•	
		VTC Videos	•		•	•	
		LS-DYNA to ISO-MME	•	•		•	
		SimVT		•		•	

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)
	0047	FFB	•	•		•	
	2017	ODB	•	•		•	
		MPDB Occupant	•	•		•	
	2020	Side Pole	•	•			
		MDB	•	•	•		
	2022	Far Side	•	•	•		
Euro NCAP		MDB	•	•	•	•	
		Side Pole	•	•		•	
	2023	MPDB Compatibility					•
		Head Impact					•
		Leg Impact					•
				Continued	ł		

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)
		Far Side Sled	•	•		•	
		MPDB Occupant	•	•		•	
	2024	VTC Quality Criteria	•	•		•	
	2024	VTC Videos	•		•	•	
		LS-DYNA to ISO-MME	•	•		•	
Euro NCAP		SimVT		•		•	
	2026 (Draft)	Front Sled	Er				
		FWDB Full Vehicle	Early access – available on request				
		VTC Quality Criteria	•	•		•	
		VTC HBM Quality Criteria	•	•		•	
		SimVT	Ea	arly access	– available	on request	

• Available for some time

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)		
	2022	MDB	•	•		•			
Global NCAP	2023	ODB	•	•		•			
	2024	Side Pole	•	•		•			
GTR	2019	Leg Impact					•		
	2020	Head Impact					•		
IIHS	2017	MDB	•	•	٠				
		ODB	•	•					
		SOB	•	•					
	Continued								

• Available for some time

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)
		MDB	•	•	•	•	
		MDB Structure Only				•	
IIHS	2024	ODB	•	•		•	
	2021	ODB Structure Only				•	
		SOB	•	•		•	
		SOB Structure Only				•	
	2024	MDB	•	•		•	
		MDB Structure Only				•	
		SOB	•	•		•	
		SOB Structure Only				•	

Automotive Assessments Workflow • New in version 21.1

Regulation	Year	Loadcase/Workflow	PRIMER	T/HIS	D3PLOT	REPORTER (migrated to workflows)	REPORTER (standard template)
	2018	Leg Impact					•
		FFB	•	•		•	
JNCAF	2023	MDB	•	•		•	
		ODB	•	•		•	
	2019	Leg Impact					•
	2024	FFB	•	•		•	
KNGAF		MDB	•	•		•	
		Side Pole	•	•		•	
	2015	R135 (Side Pole)	•	•		•	
	2022	R94 (ODB)	•	•		•	
	2022	R95 (Side MDB)	•	•		•	
	2023	R137 (FFB)	•	•		•	

New Automotive Operations

- Occupant Load Criterion (OLC)
- <u>Tibia Index (TI)</u>
- DAMAGE (DMG)

Occupant Load Criterion (OLC)

Occupant Load Criterion (OLC)

- T/HIS can now calculate OLC and generate velocity and displacement curves for MPDB Compatibility Assessment. The calculation follows the method specified in <u>Euro NCAP Technical Bulletin (TB 027) v1.1.1</u>, which is intended to be used with <u>Adult Occupant Protection Assessment Protocol v9.1.1</u>.
- The OLC Operation requires an X Acceleration Curve of the Barrier CoG as its first input and requires the Initial Velocity of the Barrier CoG either as a Velocity Curve or as a Numerical Value.

Occupant Load Criterion (OLC)

• The OLC operation generates two velocity curves:

Occupant Load Criterion (OLC)

• It also generates three displacement curves:

 T/HIS can now calculate the Tibia Index (TI) injury criterion and generate the Tibia Index curve, based on the following interaction formula specified in <u>Euro NCAP Technical Bulletin (TB 021) v4.1</u>:

$$TI(t) = \left| \frac{M_R(t)}{(M_R)_c} \right| + \left| \frac{F_Z(t)}{(F_Z)_c} \right|$$

Where, $M_R(t) = \sqrt{M_x(t)^2 + M_y(t)^2}$

• The TI operation requires three input curves $F_z(t)$, $M_x(t)$ and $M_y(t)$ and two critical constant input values $(M_R)_c$ and $(F_z)_c$.

- The TI operation generates a Tibia Index output curve.
- The Tibia Index value can be displayed on the graph by turning on the "Show Max Value" property of the Tibia Index curve.

DAMAGE Criterion (DMG)

Damage Criterion (DMG)

- The DAMAGE Criterion is a brain injury metric which is based on deformation output from a second-order system of equations.
- T/HIS can now calculate Damage Criterion (DMG) and generate the Damage curve, based on the interaction formula specified in the Euro NCAP Technical Bulletin (TB 035) v1.0 (right).
- DMG requires three input curves: Head Rotation Velocity
 X, Head Rotation Velocity Y, Head Rotation Velocity Z.
- You can also select the calculation method used to perform the Damage operation. The available methods are:
 - RK4: Runge Kutta 4
 - RKF45: Runge Kutta 45
 - NBM: Newmark Beta method

0 0 m_y $\begin{bmatrix} c_{xx} + c_{xy} + c_{xz} & -c_{xy} & -c_{xz} \\ -c_{xy} & c_{xy} + c_{yy} + c_{yz} & -c_{yz} \\ -c_{xz} & -c_{yz} & c_{xz} + c_{yz} + c_{yz} \\ \begin{bmatrix} k_{xx} + k_{xy} + k_{xz} & -k_{xy} & -k_{xz} \\ -k_{xy} & k_{xy} + k_{yy} + k_{yz} & -k_{yz} \\ \end{bmatrix}$ $0 0] (\ddot{u}_x)$ m_x 0 $0 \left\{ \ddot{u}_{y} \right\}$ m_y 0 $m_z | (\ddot{u}_z)$

 $DAMAGE = \beta maxt \{ |\delta^{\rightarrow}(t)| \}$ $\delta^{\rightarrow}(t) = [\delta x(t) \ \delta y(t) \ \delta z(t)]^{T}$ $\beta = \text{scale factor, m = mass, cij = damping, kij = stiffness}$ $\delta^{"}, \ \delta = acceleration, velocity, displacement$ $u^{"} = applied \ angular \ acceleration$ $mx = 1 \ kg, \ my = 1 \ kg, \ mz = 1 \ kg$ $kxx = 32142 \ N/m, \ kyy = 23493 \ N/m, \ kzz = 16935 \ N/m,$ $kxy = 0 \ N/m, \ kyz = 0 \ N/m, \ kxz = 1636.3 \ N/m,$ $a1=5.9148 \ ms,$ $\beta=2.9903 \ 1/m$ $[c] = a1 \times [k]$

Damage Criterion (DMG)

Damage Criterion (DMG)

• The DMG operation generates four DAMAGE curves:

- Hottes -

For these services and

Utilisation Factor

0.400 0.500 0.000 0.700 0.800

A REPORT OF

(Max all ob

and the state of t

Max \$10103877 : 1.262904E+00, Min \$10595151 : 1.823150E-12

Speed and Performance

Datums

Datums

• The previous hard-wired limit of 256 for datums has now been removed from T/HIS. Any number of datums can now be created with machine specifications being the limiting factor.

Many constant and points datums in a single session:

Write ISO-MME Files

Write ISO-MME Files

New variables have been added to ISO-MME configuration files:

- mandatoryHeaders: Controls the inclusion of mandatory headers in MME files. When set to true, all
 mandatory headers are automatically included. When set to false, mandatory headers are omitted,
 allowing headers to be rearranged using the descriptor functionality. The default value for this
 variable is true.
- testObjectHeaderNumber: Specifies the test object header number required in MMD files. By default, this value corresponds to the first letter of the curve ISO code. This variable is used when a different test object number is required instead of the default behaviour.

It is also now possible to write ISO-MME files directly from curves, without configuration, using the new <u>Curve to ISO-MME</u> Workflow.

Email Minidump Files

Windows Minidump files can now be emailed

- Following a crash on Windows a "minidump" file is created which, if sent, can sometimes enable us
 to diagnose the cause of the crash, suggest workarounds and fix the bug. Historically this file has
 been written to an obscure temporary directory making it laborious to extract and send it.
- T/HIS can now:
 - Compose an email automatically, attaching the minidump file.
 - Include further information about the crash (stack trace) in that email.
 - Launch the default email handler on the system so that you can add further information if you wish.
- This email is *not* sent automatically, you can choose to send it or not.
- Composition of these emails is optional; they can be turned off.

Windows Minidump files can now be emailed (continued)

 Minidump files and crash handling generally can be configured by preferences, but to make this easier there is now an interactive GUI which can be used to control this behaviour:

 Crash dump behaviour can also be configured at the "admin" or "installation" levels during software installation, configuring it for all users.

Initial Window Placement

Master T/HIS window can start on a selected monitor.

 On a multi-monitor desktop the "placement" preference can be used to select which of multiple monitors on a desktop the master T/HIS window starts in. Previously this was always the main display window. The bounding box (red) around the monitors (black) that make up the desktop in pixel space which is divided into 1/3rds. For example:

Right

1/3

Centre

1/3

LEFT | CENTRE | RIGHT and / or TOP | MIDDLE | BOTTOM

The monitor nearest to the centre of that 1/3rd sub-area is used.

Left

Flexible Automation and Integration

JavaScript API

JavaScript API

- It is no longer necessary to specify the memory required when running a script. The memory is now automatically increased as required.
- The function assigned to the Window onClose event can now return false to prevent the window closing if required.

- Functionalities to set and query the Model and Display Units have been added.
- The GetModelUnits and SetModelUnits methods can be accessed from the Model Class, using the model instance.
- The GetDisplayUnits and SetDisplayUnits methods can be accessed from the Units Class.

• New Automotive operations added to the Operate Class:

Class function	Required Inputs	Optional Inputs	Output	Example
Operate.Olc()	 Acceleration Curve Velocity Curve or Initial Velocity as a constant 	 X axis Interval for regularization Filter type as a string 	Returns an array of 5 curves	<pre>Operate.Olc(curve1, curve2, 0.001, 'C180'); Or Operate.Olc(curve1, 13888, 0.001, 'C180');</pre>
Operate.Ti()	 Axial Curve X Moment Curve Y Moment Curve Critical Force value Critical Bending Moment value 	 X axis Interval for regularization Filter type as a string 	Returns a curve object	Operate.Ti(curve1, curve2, curve3, 35.9, 225, 0.0001, 'C600');
Operate.Dmg()	 X Rot. Velocity Curve Y Rot. Velocity Curve Z Rot. Velocity Curve Calculation method string:'rk4','rkf45','nbm' 	 X axis Interval for regularization Filter type as a string 	Returns an array of 5 curves	<pre>Operate.Dmg(curve1,curve2,curve3, 'rk4',0.001, 'C60');</pre>

• New methods added to the Model Class:

Member function	Required Inputs	Output	Example
<pre>model.GetModelUnits()</pre>	No Input	Returns Model Unit System	<pre>let model = Model.GetFromID(1); model.GetModelUnits();</pre>
<pre>model.SetModelUnits()</pre>	Model Unit System	True if Model units are set, else False	<pre>let model = Model.GetFromID(1); model.SetModelUnits("U2");</pre>

• New methods added to the Units Class:

Class function	Required Inputs	Output	Example
Units.GetDisplayUnits()	No Input	Returns Display Unit System	Units.GetDisplayUnits();
Units.SetDisplayUnits()	Display Unit System	True if Display units are set, else False	Units.SetDisplayUnits("U2");

• New property added to the Graph Class:

Member property	Output	Example
graph.show_y2axis	Gets / sets the display of the Y2 axis	<pre>let graph = Graph.GetFromID(1); graph.show_y2axis = Graph.ON;</pre>

• New property added to the Curve Class:

Member property	Output	Example
curve.y_axis	Gets / sets the Y axis the curve is plotted on	<pre>let curve = Curve.GetFromID(1); curve.y_axis = Curve.Y2_AXIS;</pre>

> Other Developments and Perferences

and the state of t

Oasys 🔅 LS-DYNA Environment

Units

Curve Unit System

- The Curve Unit System dropdown has been introduced in the Read Data panels of T/HIS Curve, CSV and ISO.
- If a unit system is not defined for the curves in the input file, then the unit system selected from this dropdown is applied to the curves read in from the input file.
- Once units are defined for input curves, T/HIS automatically displays units on graphs (even after subsequent curve operations) and knows what scale factor to apply to any constants in Automotive functions (such as <u>OLC</u> and <u>Tibia Index</u>).

<< Undock	F	Read	Data	?	×
LS-DYNA	Groups		Keyword	T/HIS Curve	е
Bulk Data	Keyboard		CSV	Screen	
ISO	LS-PreP	ost	DIAdem	NASTRAN	
CURVOUT	Equatio	n	HDF		
Curve File	:			•	
) Search Dir	rectories F	Recu	rsively :	*.cur	
				· · · · ·	
Output Curve	: <mark>% (</mark> h	ighe	st+1)		
Output Curve :	: <mark>% (h</mark> stem :	ighe	st+1) Undefined		
Dutput Curve	: % (h stem :	ighe: U1: r	st+1) Undefined m, kg, s (SI)		
Output Curve : Curve Unit Sy: Read	: % (h stem : ¥ F	ighe: U1: r U2: r	Undefined m, kg, s (SI) mm, t, s	•	
Dutput Curve : Curve Unit Sys Read Filter :	: % (h stem :	ighe: U1: r U2: r U3: r	Undefined m, kg, s (SI) mm, t, s mm, kg, ms	· · · · · · · · · · · · · · · · · · ·	
Output Curve : Curve Unit Sys Read	: % (h stem : F	ighes U1: r U2: r U3: r U4: r	Undefined m, kg, s (SI) mm, t, s mm, kg, ms mm, g, ms	•	
Output Curve : Curve Unit Sys Read Filter :	: % (h stem :	ighes U1: r U2: r U3: r U4: r U5: 1	Undefined m, kg, s (SI) mm, t, s mm, kg, ms mm, g, ms ft, slug, s	· · · · · · · · · · · · · · · · · · ·	

<< Undock		Read	l Data		?		
LS-DYNA	Gro	ups	Keyword	T/HIS (Curve		
Bulk Data	Keyb	oard	CSV	Scr	een		
ISO	LS-Pr	ePost	DIAdem	NAST	RAN		
CURVOUT	Equ	ation	HDF				
Index File :				▼			
Output Curve	: %	(highe	st+1)				
File Format :	IS	O (Mult	iple Channels)	¥			
List Label		Filenames V					
Location			All 🔻				
Curve Label		Cł	nannel Codes	▼			
Curve Unit Sys	stem :		Undefined	•			
Dead		U1:	m, kg, s (SI)				
	hanna	U2:	mm, t, s				
	unanno	U3:	U3: mm, kg, ms U4: mm, g, ms				
		U4:					
		U5:	ft, slug, s				
		U6:	m, t, s				

<< Undock		Read	Data			? >
LS-DYNA	Group	s	Keyw	ord	T/HIS Cur	rve
Bulk Data	Keybo	ard	CS\	/	Screer	ı
ISO	LS-PreF	Post	DIAde	m	NASTRA	٨N
CURVOUT	Equati	on	HDF			
Open :	CSV	File			▼	
File contains :						
CSV File :					•	
Curve :	% (1	nighe	st+1)			
File Format:	Х,Ү,	X,Y,)	K,Y, ▼			
Field Separato	r: (Comm	a ▼			
X-AXIS						
Read X V	/alues		Column :		1	
Generate	X Value	s	Start : 0.0000E+00		0000E+00	
			Interval :	1.	0000E+00	
CURVE LABELS						
Read Curve Labels			Row :		1	
Generate Labels			Column #	ŧ		
AXIS LABELS						
Read A	xis Labe	ls	Row :		2	
Curve Unit Sys	stem :		Undefin	ed	•	
Read		U1:	m, kg, s (SI)		
10000		U2: I	mm, t, s			
		U3: I	mm, kg, n	ıs		
		U4: I	mm, g, ma	s		
		U5:	ft, slug, s			
		U6: I	m, t, s			

Curve Unit System

- Multi-selection of curves is now possible using the curves toggle button, allowing the Unit System or X-Y Units to be modified for multiple curves simultaneously.
- Display Units can also be viewed and adjusted directly from the curves panel.

)		
)		
)		
▼		
Undefined		
►		
►		
►		

New Preferences

New preferences

Preference	Description
oasys*javascript_maximum_memory_size	Maximum memory allocated for garbage collection (MB)
oasys*cd_compose_email this*cd_compose_email	Whether or not to offer to compose an email for sending minidump files.
oasys*cd_email_address this*cd_email_address	Email address in To: field of crash dump emails.
oasys*cd_cc_addresses this*cd_cc_addresses	Email address(es) in Cc: field of crash dump emails.
oasys*cd_custom_email this*cd_custom_email	Custom method of sending emails.
oasys*cd_dump_directory this*cd_dump_directory	Directory in which to save crash dump files
oasys*cd_email_method this*cd_email_method	Method used to create crash dump emails.
oasys*cd_minidump_file this*cd_minidump_file	Whether or not to create minidump files, and what to do with them.

New preferences

Preference	Description
this*ctable_show_olc	Display OLC value
this*s_to_ms_conversion_time	Time threshold for seconds to milliseconds conversion
this*show_olc_value	Display OLC value
this*damage_method	Calculation method for calculating Damage injury metric
this*automotive_constant_unit_system	Unit system of the constants in DMG, OLC and TI Operation
this*auto_filter	Automatically filter curves
this*auto_filter_class	Filter class for automatic filtering of curves

Contact us

Global / UK T: +44 121 213 3399 E: <u>dyna.support@arup.com</u>

India T: +91 40 69019723 / 98 E: <u>india.support@arup.com</u>

China T: +86 21 3118 8875 E: <u>china.support@arup.com</u>

USA T: +1 415 940 0959 E: <u>us.support@arup.com</u>

Follow us on:

Subscribe to our newsletter:

😶 @Oasys

@Oasys LS-DYNA

Environment